
Étoilé
Where it is,

where it’s going,
why it isn’t there yet

2010

2010 - 2004 = 6

• Six years !

• 4 developer releases only

• No user release yet

What’s going on !

Timeline

2004 20102007

2005
Hunting Pink

Elephants

2008
Changing

Plans

July
Étoilé 0.2

What is it?

• Étoilé is a user environment designed from
the ground up around the things people do
with computers: create, collaborate, and
learn.

Goals

• Composite Document

• Collaboration

• Persistence & Versioning

• Clean, consistent and plastic UI

• Fast and Easy Development

2007 - Changing Goals

• EtoileUI started in May

• Étoilé 0.2 in July

• Étoilé ObjC runtime in November

• Started CoreObject in September 2007

2008

• Smalltalk started in July

• Smalltalk becomes LanguageKit in October

• Étoilé 0.4 in November highligting

• CoreObject & LanguageKit

Étoilé 0.4

2009

• Finishing EtoileUI

• Experimenting with EtoilePaint

• EtoileFoundation: HOM, Mirror-based
Reflection

• LanguageKit: Interpreter, JTL, optimization...

2009 continued

• Étoilé runtime is dead

• GNUstep runtime implements new ABI.

• Camaelon is dead

• New GNUstep theme engine

Étoilé team working more closely with GNUstep

2010

• Étoilé 0.4.3 in July January March

• What’s next?

• Étoilé 0.4.4 and 0.4.5

Just before 2011 ;-)

• Étoilé 0.5

Keys Ideas

• Object Manager

• Document Editor

• Composite Document Editor

Hypercard on Steroids

• With CoreObject and EtoileUI, every
applications become:

• a composite document editor

• an UI builder

• an object manager

Basic Organization

• Objects

• image, contact, compound document etc.

• Groups

• like a tag but more generic

• Libraries (they are just groups)

• photos, contacts, etc.

Versioning

Makes the user more at ease with:

• No save

• Document History

• Undo/Redo on all persistent data

• Versioning that scales to video, image, etc.

Import/Export/Convert

• No document or content export/import
necessary within Étoilé

• Import/export for communicating with the
outside world is built in

Data Sharing

•We need something like a filesystem but with:

• real semantics

• fine-grained structured access

• multiple views or organization levels

Eliminates name
service mulplication.

Shared content
access is about
NewtonSoup-like
properties or
attaching metadatas.

CoreObject Protocol

The protocol role is twofold:

• organize objects and documents

• expose internal document structure or
object content

CoreObject Example
library := COGroup new.

song := COObject new.

song setValue: ‘More Flowers’ forProperty: ‘albumName’.

library addMember: song.

playlist = COGroup new.

library addMember: playlist.

History Table

Object Version Cxt Version Global Version Message

library 0 0 45 Create

song 0 1 46 Create

song 1 2 47 Set Name

library 1 3 48 Add Member

playlist 0 4 49 Create

library 2 5 50 Add Member

