
CoreObject & EtoileUI

Swansea 2009



Étoilé

A desktop environment built around:

• Pervasive Data Sharing & Versioning

• Composite Document

• Collaboration

• Document-oriented



Raskin’s First Law

A computer shall not harm your work or, 
through inaction, allow your work to come to 

harm.



Versioning

Makes the user more at ease with:

• No save

• Document History

• Undo/Redo on all persistent data

• Versioning that scales to video, image, etc.



Raskin's Second Law

• A computer shall not waste your time or 
require you to do more work than is strictly 
necessary



Import/Export/Convert

• No document or content export/import 
necessary within Étoilé

• Import/export for communicating with the 
outside world is built in



Data Sharing

•We need something like a filesystem but with:

• real semantic

• fine-grained structure access

• multiple views or organization levels

Eliminates name 
service mulplication.

Shared content 
access is about 
NewtonSoup-like 
properties or 
attaching metadatas.



CoreObject Protocol

The protocol role is twofold:

• organize objects and documents

• expose internal document structure or 
object content



CoreObject

Core Object ProtocolCore Object ProtocolCore Object ProtocolCore Object Protocol

Native 
Backend

EtoileUI
Backend

FUSE 
Backend FS Backend

EtoileSerialize EtoileUI FUSE Filesystem

Object Store

EtoileUI backend 
exposes composite 
document structure 
in term of CO 
interfaces.



Object Store

• No Object-Relational-Mapping

• Stores changes as logical operations with:

• serialized messages

• snapshots

• Inspired by NewtonSoup

• Uses a SQL database as metadata server

Follows prevalence 
model.



Multi-level Versioning

• Fine-grained versionning with various levels:

• Global (private)

• Context

• Persistent Root



Object Contexts

Photo Library Contact LibraryMusic Library

Relationships between persistent roots

CoreObjectGraph 
partionned into 
object contexts



Example

COGroup *library = [[COGroup alloc] init];

ETMusicTrack *track = [[ETMusicTrack alloc] init]; 

[track setValue: @”More Flowers” forProperty: 
kETAlbumName];

[group addMember: track];

COGroup *playlist = [[COGroup alloc] init];

[library addMember: playlist];





How it began

•Why UI in Photoshop and IDE are so rigid? 

• Unifying Pane-based UI with PaneKit

• AppKit is great but NSView and NSCell 
hierarchy doesn’t scale

• AppKit API is too big for my mind :-)



What does it solve?

• Generic protocol for Structured Document

• Building blocks for Graphics Editor

• Complex widget development

• Zero UI glue code

• UI Plasticity



Instrument Examaple

• ETSelectTool *tool = [[mainViewItem layout] 
attachedInstrument];

• [[tool selectionAreaItem] setShape: [ETShape 
circle];



Turtles all the way down

• Everything is a layout item

• selection rectangle

• handles

• shapes

• windows

• layers



From Events to Actions

Widget Backend
Run Loop

Event 
Processor

Active 
Instrument

EUI Events

Action Handler
(bound to a layout item)

Raw Events

Semantic Actions



What do we gain?

• Input Device Indepent

• Multi-instruments Interaction

• one per input device (e.g bimanual 
interaction)

• one per user (e.g. collaboration)

• Ability to operate over process boundaries



Separation of Concerns

• No monolithic view/wigdet, but rather…

• UI aspects stored in a repository

• Styles

• Layouts

• Action Handlers

• Views


